Quasisymmetric structures on surfaces

نویسندگان

  • Kevin Wildrick
  • Juha Heinonen
چکیده

We show that a locally Ahlfors 2-regular and locally linearly locally contractible metric surface is locally quasisymmetrically equivalent to the disk. We also discuss an application of this result to the problem of characterizing surfaces embedded in some Euclidean space that are locally bi-Lipschitz equivalent to a ball in the plane. In memoriam: Juha Heinonen (1960 2007)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 S ep 2 00 7 Quasisymmetric structures on surfaces ∗

We show that a locally Ahlfors 2-regular and locally linearly locally contractible metric surface is locally quasisymmetrically equivalent to the disk. We also discuss an application of this result to the problem of characterizing surfaces in some Euclidean space that are locally bi-Lipschitz equivalent to an open subset of the plane.

متن کامل

Quasisymmetric Sewing in Rigged Teichmüller Space

One of the basic geometric objects in conformal field theory (CFT) is the moduli space of Riemann surfaces whose boundaries are “rigged” with analytic parametrizations. The fundamental operation is the sewing of such surfaces using the parametrizations. We generalize this picture to quasisymmetric boundary parametrizations. By using tools such as the extended λ-lemma and conformal welding we pr...

متن کامل

A Complex Structure on the Moduli Space of Rigged Riemann Surfaces

The study of Riemann surfaces with parametrized boundary components was initiated in conformal field theory (CFT). Motivated by general principles from Teichmüller theory, and applications to the construction of CFT from vertex operator algebras, we generalize the parametrizations to quasisymmetric maps. For a precise mathematical definition of CFT (in the sense of G. Segal), it is necessary th...

متن کامل

Skew row-strict quasisymmetric Schur functions

Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...

متن کامل

A Note on Three Types of Quasisymmetric Functions

In the context of generating functions for P -partitions, we revisit three flavors of quasisymmetric functions: Gessel’s quasisymmetric functions, Chow’s type B quasisymmetric functions, and Poirier’s signed quasisymmetric functions. In each case we use the inner coproduct to give a combinatorial description (counting pairs of permutations) to the multiplication in: Solomon’s type A descent alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008